sábado, 11 de noviembre de 2017



Problemática ambiental mundial

Los problemas ambientales globales son aquellos que se han originado a causa del uso intensivo o alteración de los recursos naturales y cuya dimensión afecta de forma global al medio ambiente de nuestro planeta.

La problemática ambiental hoy día tiene una dimensión global, es decir involucra a todo el planeta, para su caracterización se habla permanentemente de su contaminación general, que afecta todos los ecosistemas del mismo, trayendo como consecuencia su deterioro y con el pasar de los tiempos su destrucción, que está directamente relacionada con los seres humanos, sus formas de vida y la manera en que desarrollan sus actividades económicas, sociales, políticas y culturales, y los procedimientos que emplean para explotar sus recursos naturales para el bienestar de la vida humana en el planeta.

Imagen relacionada


Calentamiento global

Qué es el Calentamiento Global?


El término Calentamiento Global se refiere al aumento gradual de las temperaturas de la atmósfera y océanos de la Tierra que se ha detectado en la actualidad, además de su continuo aumento que se proyecta a futuro.
Nadie pone en duda el aumento de la temperatura global, lo que todavía genera controversia es la fuente y razón de este aumento de la temperatura. Aún así, la mayor parte de la comunidad científica asegura que hay más que un 90% de certeza que el aumento se debe al aumento de las concentraciones de gases de efecto invernadero por las actividades humanas que incluyen deforestación y la quema de combustibles fósiles como el petróleo y el carbón. Estas conclusiones son avaladas por las academias de ciencia de la mayoría de los países industrializados.
Cambios de temperatura
Si se revisa el gráfico de las temperaturas de la superficie terrestre de los últimos 100 años, se observa un aumento de aproximadamente 0.8ºC, y que la mayor parte de este aumento ha sido en los últimos 30 años.

La proyecciones a partir de modelos de clima fueron resumidos en el Cuarto Reporte del IPCC (Panel Intergubernamental sobre Cambio Climático) en el 2007. Indican que la temperatura global probablemente seguirá aumentando durante el siglo XXI, el aumento sería de entre 1.1 y 2.9ºC en el escenario de emisiones más bajo y entre 2.4 y 6.4ºC en el de mayores emisiones.

Gases de efecto invernadero




El “efecto invernadero” es el calentamiento que se produce cuando ciertos gases de la atmósfera de la Tierra retienen el calor. Estos gases dejan pasar la luz pero mantienen el calor como las paredes de cristal de un invernadero.


En primer lugar, la luz solar brilla en la superficie terrestre, donde es absorbida y, a continuación, vuelve a la atmósfera en forma de calor. En la atmósfera, los gases de invernadero retienen parte de este calor y el resto se escapa al espacio. Cuantos más gases de invernadero, más calor es retenido.

Los niveles de gases de efecto invernadero (GEI) han aumentado y descendido durante la historia de la Tierra pero han sido bastante constantes durante los últimos miles de años. Las temperaturas medias globales se han mantenido bastante constantes también durante este periodo de tiempo hasta hace poco. A través de la combustión de combustibles fósiles y otras emisiones de GEI, los humanos están aumentando el efecto invernadero y calentando la Tierra.

Los científicos a menudo utilizan el término “cambio climático” en lugar de calentamiento global. Esto es porque, dado que la temperatura media de la Tierra aumenta, los vientos y las corrientes oceánicas mueven el calor alrededor del globo de modo que pueden enfriar algunas zonas, calentar otras y cambiar la cantidad de lluvia y de nieve que cae. Como resultado, el clima cambia de manera diferente en diferentes áreas.


Resultado de imagen para calentamiento globalFactores
  • Aumento de la población mundial
  • Quema de combustibles 
  • Destrucción de bosques
  • Acciones antropicas
  • Alteraciones de la radiación solar
  • La mano del hombre
consecuencias
Temperaturas más cálidas
La acumulación de gases contaminantes hace que las temperaturas aumenten cada vez más y que los climas cambien: esto provoca sequías y, además, aumenta el riesgo de incendios que conllevan la deforestación y la desertización del planeta
Tormentas más intensas
El hecho de que las temperaturas sean más altas hace que las lluvias sean menos frecuentes, pero que sean más intensas; por tanto, el nivel de inundaciones y su gravedad también irán en aumento.

Propagación de enfermedades
Un cambio de temperatura de varios grados puede hacer que la zona templada se haga más acogedora a la propagación de determinadas enfermedades. De esta manera, pueden empezar a darse casos de mal de Chagas, el dengue u otras enfermedades que están olvidadas en los países desarrollados y en zonas que tradicionalmente han sido más frías. 

 Olas de calor más fuertes

El calentamiento global del planeta producido por la quema acelerada de combustibles fósiles agotables ha sido muy intenso en el Polo Norte. Esto hace que el Polo Norte esté hoy mucho más caliente que hace cincuenta años. La salud e incluso la vida de miles de personas pueden verse en riesgo debido al aumento de las olas de calor, tanto en lo que se refiere a frecuencia como a intensidad.
Derretimiento de los glaciares
Océanos con temperaturas más altas son océanos que derriten el hielo de los casquetes polares: esto significa que aumenta el nivel del mar. 

Los efectos de alcance global incluirán cambios sustanciales en la disponibilidad de agua para beber y para riego, así como un aumento de los niveles del mar, cambios en los patrones de circulación del agua en los océanos, y la amenaza a la supervivencia de especies de flora y fauna que sobreviven en dichos ecosistemas. 

Huracanes más peligrosos

El aumento de temperatura del mar hace que los huracanes se vuelvan más violentos. ¿Por qué? Pues porque un huracán es el medio que tiene el planeta para repartir el exceso de calor de las zonas cálidas a las más frías. Y a más temperatura, más huracanes, con todos los problemas que conllevan: destrucción de ciudades, de cultivos, desmantelamiento de todos los sistemas, enfermedades…

Cambio de los ecosistemas
Una temperatura más alta, menos precipitaciones, sequías e inundaciones hacen que el clima se adapte a esta nueva climatología y, por tanto, se produzcan cambios en la duración de las estaciones, aparezcan patrones más propios de climas monzónicos…

Aumento del nivel del mar

Como los casquetes se derriten, se vierte muchísima más agua en los mares y océanos y, por tanto, aumenta el nivel del mar: esta es una de las consecuencias del cambio climático más graves, ya que significa que muchísimas islas podrían desaparecer en el futuro y que un buen número de ciudades verán cómo su distancia a la costa se reduce de forma significativa.

Resultado de imagen para calentamiento global consecuencias



soluciones 

Estas son algunas de las soluciones que podemos llevar a cabo en nuestra vida cotidiana (que aunque a veces son insignificantes, si los hacemos todos constituirían un gran avance para solucionar este problema) 


1.- Cambiar las bombillas tradicionales por las lámparas compactas fluorescentes (CFL). Las CFL, consumen 60menos electricidad que una bombilla tradicional, con lo que este simple cambio reducirá la emisión de 140 kilos de dióxido de carbono al año.

-2. Fijar el termostato a dos grados menos en invierno y dos grados más en verano. Ajustando la calefacción y el aire acondicionado se podrían ahorrar unos 900 kilos de dióxido de carbono al año.

- 3. Usar menos agua caliente. Se puede usar menos agua caliente instalando una ducha-teléfono de baja presión y lavando la ropa con agua fría o tibia.

-4. Utilizar un colgador en vez de la secadora de ropa. Si se seca la ropa al aire libre la mitad del año, se reduce en 320 kilos la emisión de dióxido de carbono al año

.- 5. Comprar productos de papel reciclado. La fabricación de papel reciclado consume entre 70% y 90% menos energía y evita que continúe la deforestación mundial.

- 6. Comprar alimentos frescos. Producir comida congelada consume 10 veces más energía

- 7. Comprar alimentos orgánicos. Los cultivos orgánicos absorben y almacenan mucho mas dióxido de carbono que los cultivos de las granjas "convencionales".

- 8. Evitar comprar productos que vengan en envases pesados. Si se reduce en un 10% la basura personal se puede ahorrar 540 kilos de dióxido de carbono al año.

- 9. Reciclar, se pueden ahorrar hasta 1000 kilos de residuos en un año reciclando la mitad de los residuos de una familia.

- 10. Elegir un automóvil de menor consumo. Al comprar un automóvil nuevo puede ahorrar 1.360 kilos de dióxido de carbono al año si este rinde dos kilómetros por litro de gasolina más que el otro. Es preferible que compre un automóvil híbrido o con biocombustibles.

11. Usar menos el auto. Prefiera caminar, andar en bicicleta, compartir el automóvil y usar el transporte público. Reduciendo el uso del automóvil en 15 kilómetros semanales evita emitir 230 kilos de dióxido de carbono al año.

-12. Revisar semanalmente los neumáticos. Inflar correctamente los neumáticos mejora la tasa de consumo de combustible en más del 3%. Cada litro de gasolina ahorrado evita la emisión de tres kilos de dióxido de carbono.


- 13. Plantar árboles. Una hectárea de árboles elimina, a lo largo de un año, la misma cantidad de dióxido de carbono que producen cuatro familias en ese mismo tiempo. Un solo árbol elimina una tonelada de dióxido de carbono a lo largo de su vida.
Resultado de imagen para calentamiento global soluciones

sábado, 2 de septiembre de 2017



ALCOHOLES

Su estructura es similar a la de los hidrocarburos, en los que se sustituye uno o más átomos de hidrógeno por grupos "hidroxilo", -OH.  

  • Se nombran como los hidrocarburos de los que proceden, pero con la terminación "-ol", e indicando con un número localizador, el más bajo posible, la posición del grupo alcohólico. Según la posición del carbono que sustenta el grupo -OH, los alcoholes se denominan primariossecundarios o terciarios.  
2-butanol o butan-2-ol (Normas IUPAC 1993)
  •  Si en la molécula hay más de un grupo -OH se utiliza la terminación "-diol", "-triol", etc., indicando con números las posiciones donde se encuentran esos grupos. Hay importantes polialcoholes como la glicerina "propanotriol", la glucosa y otros hidratos de carbono




1,2,3-propanotriol, propano-1,2,3-triol o glicerina

  •     Cuando el alcohol non es la función principal, se nombra como "hidroxi-", indicando el número localizador correspondiente. 


 3-hidroxi-4-metilpentanal

Propiedades generales

Los alcoholes suelen ser líquidos incoloros de olor característico, solubles en el agua en proporción variable y menos densos que ella. Al aumentar la masa molecular, aumentan sus puntos de fusión y ebullición, pudiendo ser sólidos a temperatura ambiente (por ejemplo el pentaerititrol funde a 260 °C). A diferencia de los alcanos de los que derivan, el grupo funcional hidroxilo permite que la molécula sea soluble en agua debido a la similitud del grupo hidroxilo con la molécula de agua y le permite formar enlaces de hidrógeno. La solubilidad de la molécula depende del tamaño y forma de la cadena alquílica, ya que a medida que la cadena alquílica sea más larga y más voluminosa, la molécula tenderá a parecerse más a un hidrocarburo y menos a la molécula de agua, por lo que su solubilidad será mayor en disolventes apolares, y menor en disolventes polares. Algunos alcoholes (principalmente polihidroxílicos y con anillos aromáticos) tienen una densidad mayor que la del agua.

Propiedades químicas de los alcoholes

Los alcoholes pueden comportarse como ácidos o bases gracias a que el grupo funcional es similar al agua, por lo que se establece un dipolo muy parecido al que presenta la molécula de agua.

Acidez y basicidad del metanol.

Por un lado, si se enfrenta un alcohol con una base fuerte o con un hidruro de metal alcalino se forma el grupo alcoxi, en donde el grupo hidroxilo se desprotona dejando al oxígeno con carga negativa. La acidez del grupo hidroxilo es similar a la del agua, aunque depende fundamentalmente del impedimento estérico y del efecto inductivo. Si un hidroxilo se encuentra enlazado a un carbono terciario, este será menos ácido que si se encontrase enlazado a un carbono secundario, y a su vez este sería menos ácido que si estuviese enlazado a un carbono primario, ya que el impedimento estérico impide que la molécula se solvate de manera efectiva. El efecto inductivo aumenta la acidez del alcohol si la molécula posee un gran número de átomos electronegativos unidos a carbonos adyacentes (los átomos electronegativos ayudan a estabilizar la carga negativa del oxígeno por atracción electrostática).

EJERCICIOS 




sábado, 19 de agosto de 2017

ALQUENOS

Los alquenos son hidrocarburos insaturados que tienen uno o varios enlaces carbono-carbono en su molécula. Se puede decir que un alqueno es un alcano que ha perdido dos átomos de hidrógeno produciendo como resultado un enlace doble entre dos carbonos. Los alquenos cíclicos reciben el nombre de cicloalquenos.



Formulación y nomenclatura de alquenos


La fórmula general de un alqueno de cadena abierta con un sólo doble enlace es CnH2n. Por cada doble enlace adicional habrá dos átomos de hidrógeno menos de los indicados en esta fórmula.

Nombres tradicionales

Al igual que ocurre con otros compuestos orgánicos, algunos alquenos se conocen todavía por sus nombres no sistemáticos, en cuyo caso se sustituye la terminación -enosistemática por -ileno, como es el caso del eteno que en ocasiones se llama etileno, o propeno por propileno.

Nomenclatura sistemática (IUPAC)

1. Nombrar al hidrocarburo principal: Se ha de encontrar la cadena carbonada más larga que contenga el enlace doble, no necesariamente la de mayor tamaño, colocando los localizadores que tengan el menor número en los enlaces dobles, numerando los átomos de carbono en la cadena comenzando en el extremo más cercano al enlace doble. NOTA: Si al enumerar de izquierda a derecha como de derecha a izquierda, los localizadores de las insaturaciones son iguales, se busca que los dobles enlaces tenga menor posición o localizador más bajo.

2. Si la cadena principal tiene sustituyentes iguales en el mismo átomo de carbono separando por comas los números localizadores que se repiten en el átomo, estos se separan por un guion de los prefijos: di, tri, tetra, etc. Respectivamente al número de veces que se repita el sustituyente.

3. Los sustituyentes se escriben de acuerdo al orden alfabético con su respectivo localizador.

4. Si en la cadena principal existen varios sustituyentes ramificados iguales se coloca el número localizador en la cadena principal separando por un guion, y se escribe el prefijo correspondiente al número de veces que se repita con los prefijos: bis, tris, tetraquis, pentaquis, etc. Seguido de un paréntesis dentro del cual se nombra al sustituyente complejo con la terminación -IL.

5. Realizado todo lo anterior con relación a los sustituyentes, se coloca el número de localizador del doble enlace en la cadena principal separada de un guion, seguido del nombre de acuerdo al número de átomos de carbono reemplazando la terminación -ano por el sufijo -eno.

6. Si se presentan más de un enlace doble, se nombra indicando la posición de cada uno de los dobles enlaces con su respectivo número localizador, se escribe la raíz del nombre del alqueno del cual proviene, seguido de un prefijo de cantidad: di, tri, tetra, etc. y utilizando el sufijo -eno. Ej:-dieno, -trieno y así sucesivamente.

Propiedades físicas

La presencia del doble enlace modifica ligeramente las propiedades físicas de los alquenos frente a los alcanos. De ellas, la temperatura de ebullición es la que menos se modifica. La presencia del doble enlace se nota más en aspectos como la polaridad y la acidez.

Reacciones

Los alquenos son más reactivos que los alcanos. Sus reacciones características son las de adición de otras moléculas, como haluros de hidrógeno, hidrógeno y halógenos. También sufren reacciones de polimerización, muy importantes industrialmente.

  1. Hidrohalogenación: se refiere a la reacción con haluros de hidrógeno formando alcanos halogenados del modo CH3-CH2=CH2 + HX → CH3CHXCH3. Por ejemplo, halogenación con el ácido HBr: AlkeneAndHBrReaction.png
Estas reacciones deben seguir la Regla de Markovnikoff de enlaces dobles.
  1. Hidrogenación: se refiere a la hidrogenación catalítica (usando PtPd, o Ni) formando alcanos del modo CH2=CH2 + H2 → CH3CH3.
  2. Halogenación: se refiere a la reacción con halógenos (representados por la X) del modo CH2=CH2 + X2 → XCH2CH2X. Por ejemplo, halogenación con bromo:
AlkeneAndBr2Reaction.png

ALQUINOS

Los alquinos son hidrocarburos alifáticos con al menos un triple enlace (dos enlaces π pi y uno Σ sigma) -C≡C- entre dos átomos de carbono. Se trata de compuestos metaestables debido a la alta energía del triple enlace carbono-carbono. Su fórmula general es CnH2n-2



Nomenclatura
Para que den nombre a los hidrocarburos del tipo alquino se siguen ciertas reglas similares a las de los alquenos.
  1. Se toma como cadena principal la cadena continua más larga que contenga el o los triples enlaces.
  2. La cadena se numera de forma que los átomos del carbono del triple enlace tengan los números más bajos posibles.
  3. Dicha cadena principal a uno de los átomos de carbono del enlace triple. Dicho número se sitúa antes de la terminación -ino. Ej.: CH3-CH2-CH2-CH2-C≡C-CH3, hept-2-ino.
  4. Si hay varios triples enlaces, se indica con los prefijos di, tri, tetra... Ej.: octa-1,3,5,7-tetraino, CH≡C-C≡C-C≡C-C≡CH.
  5. Si existen dobles y triples enlaces, se da el número más bajo al doble enlace. Ej.: pent-2-en-4-ino, CH3-CH=CH-C≡CH
  6. Los sustituyentes tales como átomos de halógeno o grupos alquilo se indican mediante su nombre y un número, de la misma forma que para el caso de los alcanos. Ej.: 3-cloropropino, CH≡C-CH2Cl; 2,5-dimetilhex-3-ino, CH3-CH(CH3)-C≡C-CH(CH3)-CH3.

Propiedades físicas

1) Son insolubles en agua, pero bastante solubles en disolventes orgánicos usuales y de baja polaridad: ligroína, éter, benceno, tetracloruro de carbono.
2) Son menos densos que el agua y sus puntos de ebullición muestran el aumento usual con el incremento del número de carbonos y el efecto habitual de ramificación de las cadenas.
3) Los puntos de ebullición son casi los mismos que para los alcanos o alquenos con el mismo esqueleto carbonado.
4) Los tres primeros términos son gases; los demás son líquidos o sólidos.
5)A medida que aumenta el peso molecular aumentan la densidad, el punto de fusión y el punto de ebullición.
6) Los acetilenos son compuestos de baja polaridad, por lo cual sus propiedades físicas son muy semejantes a la de los alquenos y alcanos.
Hay que tener en cuenta que los acetilenos completen la regla del cuarteto.

Propiedades químicas

Las reacciones más frecuentes son las de a4dición: de hidrógeno, halógeno, agua, etc. En estas reacciones se rompe el triple enlace y se forman enlaces de menor polaridad: dobles o sencillos.

Hidrogenación en presencia de un catalizador: cis.

Hidrogenación de alquinos

Los alquinos pueden ser hidrogenados para dar los correspondientes cis-alquenos (doble enlace) tratándolos con hidrógeno en presencia de un catalizador de paladio sobre sulfato de bario o sobre carbonato de calcio (catalizador Lindlar) parcialmente envenenado con óxido de plomo. Si se utiliza paladio sobre carbón activo el producto obtenido suele ser el alcanocorrespondiente (enlace sencillo).
CH≡CH + H2 → CH2=CH2 + H2 → CH3-CH3
Aunque la densidad de electrones y con esto de carga negativa en el triple enlace es elevada pueden ser atacados por nucleófilos. La razón se encuentra en la relativa estabilidad del anión de vinilo formado.
Frente al sodio o el litio en amoníaco líquido, se hidrogena produciendo trans-alquenos.1
CH3-C≡C-CH3 + 2 Na + 2 NH3 → CH3-CH=CH-CH3 (trans) + 2 NaNHH2

Halogenación, hidrohalogenación e hidratación de alquinos

Así como les ocurre a los alquenos, los alquinos participan en otras reacciones de adición:

Halogenación

Dependiendo de las condiciones y de la cantidad añadida de halógeno (flúor, F2; cloro, Cl2; bromo, Br2...), se puede obtener derivados halogenados del alqueno o del alcano correspondiente.
HC≡CH + Br2 → HCBr=CHBr
HC≡CH + 2 Br2 → HCBr2-CHBr2

Hidrohalogenación, hidratación, etc.

El triple enlace también puede adicionar halogenuros de hidrógeno, agua, alcohol, etc., con formación de enlaces dobles o sencillos. En general se sigue la regla de Markovnikov.
HC≡CH + H-X → CH2=CHX donde X = F, Cl, Br...
HC≡CH + H2O → CHOH=CH2B